

Jet structure topical group meeting

Dennis V. Perepelitsa (BNL), Rosi Reed (Lehigh)

29 April 2016 sPHENIX Jet Structure Meeting

Last time

- First meeting on 15 April 2016: https://indico.bnl.gov/confld=2009
 - discussed organization and physics scope of the group
 - discussed general strategy for addressing Berndt's charge
- Given short timescale, we were advised in sPHENIX General Meeting to identify a small, specific set of studies & plots sooner rather than later
 - → in this meeting, we will attempt to do just that
 - → specifics of "de-scoped" detector configurations are now being discussed within Collaboration

Timeline (as previously envisioned...)

				W		i !	
APril							
Nay	1	2	3	4	5	6	7
/4				11			
	15	16	17	18	19	20	21
	22	23	24	25	26	27	28
	29	30	31				

- Only four weeks and change until 31 May deadline
- Possible Jet Structure meeting dates
- Strawman date for defined geometries + MC generation
- Proposed plots shown at sPHENIX Collaboration Meeting
- Finalize and document results (led by SP)
- Deadline for Berndt's charge

Detector configurations

- Still waiting for specific direction from Spokespersons + Project Management + Executive Committee
- However, we may be asked to evaluate the following:

cost / capability

- → a configuration which can "do all the physics" (cost irrelevant)
- → the "baseline" configuration described in C&S review in the Fall (\$82m)
- → 2-3 configurations with \$75m price tag
- As an exercise, consider Jamie's strawman descoping options at EC meeting & discuss implications for our group

Nagle consideration A

One Option – can we build all the EMCal towers, and gang the readout $2x2 \rightarrow saves \$3M$

Minimal impact on jet and direct photon physics (direct photons > 15 GeV where they dominate is already beyond 2γ separation anyway).

- EMCal segmentation would still be smaller than HCal even with 2x2 ganging
 - → minimal impact on jet performance
 - → minimal, if any, impact on track → cluster matching?
- Impact on photon issues also probably minimal (see next slide)
- Likely no impact for Jet Structure group

Photon performance?

- Two major issues for photon ID with $p_T > 20$ GeV in Au+Au:
- 1. Separation of one-photon clusters from merged $\pi^0 \rightarrow 2\gamma$ decays
 - infeasible at given EMCal segmentation & photon p_T range
 - left plot: γ/π^0 ratio > 1 and rising in this regime anyway
- 2. Isolation of photon atop fluctuating UE background
 - MIE studies demonstrated that UE driven by fluctuations at truthlevel, not by calorimeter response per se

Nagle consideration B

One Option – can we build only half the EmCal Towers

→ Saves \$2.1M (towers) + \$2M (electronics) = \$4.1M

Could cover | eta | < 0.5 and plan to build out as much as possible later.

- Direct photon physics acceptance down by factor of 2.
- Upsilon physics down by a factor of ~4 (easy to check w/o GEANT).
- What is jet resolution in region with only HCal (easy to check with GEANT) boundary region is not great, but probably correctable.
- Jet energy measurement affected across the boundary
 - \rightarrow performance particularly η dependent
- Statistical projections for photon measurements decreased

Nagle consideration C

One Option – split the outer HCal into two longitudinal segments and only build the inner one (i.e. reduce the total calorimeter number of interaction lengths). \rightarrow saves (?) - \$2-3M depending on split

- * Note that one actually only needs a fraction of the HCal outer steel to return the flux. Note later it doubles the outer HCal electronics
- Main impact hadronic energy and jet energy resolution low side tail due to fluctuations in energy leakage (easy to quickly GEANT evaluate)
- Jet energy measurement degraded
 - → worse resolution, response has long(er?) tails to low/high values

Jet energy measurement

- Characterize jet energy response at a few p_T points
 - more specifically, resolution and non-Gaussian tails

Nagle consideration D

One Option - One could multiplex the data to the DCM 2 modules (reducing them by $x2) \rightarrow saves$ (?)

- Factor of 2 reduction in Au+Au min.bias rate
- No impact on highest energy photon/jet physics, and for pp pA
- Biggest effect is loss of x2 in Upsilons and lower energy jets
- Statistics for rare (triggerable) probes unchanged
 - \rightarrow no impact for high- p_T jet or photon-jet measurements?
 - → low-p_T measurements probably not statistically limited anyway
- No impact for Jet Structure group?

Nagle consideration E

I believe at this point re-using the VTX pixels is a fiction (see the next slide), and that we should put this option aside.

I also have major concerns about the TPC option (really early R&D and no realistic simulation on the horizon for evaluation).

My recommendation to at least pursue is MAPS with one inner pixel layer and reduced N-- outer layers costed to around < \$6M. Evaluate performance for resolution (potentially moving outer layer in) and pattern recognition for Upsilon (with EmCal match) and hadrons (with Calo match).

- Obviously, tracking heavily impacts FF and p_T -flow measurements
 - \rightarrow efficiency, p_T resolution, fake rate
 - → however, no impact for our group from DCA performance
- Need direction from SP+EC on what configurations will be

Charged particle measurement

- Characterize efficiency, p_T resolution, fake rate
 - → do it for charged particles inside known jet cone
 - → also valuable to do it in MB Hijing events, but might be more appropriate for Upsilon Topical Group?

Summary of Nagle considerations

- A. Ganged EMCal tower readout: minimal impact (for Jet Structure measurements)
- B. Half coverage of EMCal: impact on jet response, photon statistics
- C. Fewer interaction lengths in HCal: potentially major impact on jet response
- D. Reduction of MB Au+Au rate: minimal impact for us
- E. Various tracking options: major impact on charged particle measurements
- Next set of slides: <u>what simulations should we address</u> these with?

Photon-jet events?

- Megan and Gunther suggested focusing on FF in photon-jet events to simultaneously test multiple systems:
 - 1. jet energy measurement for HCal + EMCal
 - efficiency / resolution / fake rate for charged particle tracking inside jet cone
 not affected by
 - 3. photon ID, resolution for EMCal <u>descoped options</u>
- For Berndt's charge, I suggest that inclusive jets are more appropriate

Strawman simulation proposal

- p_T = 40-45 GeV, $|\eta|$ < 0.6 dijet events, full G4 calo sim, $N_{\rm evt}$ = 10k
 - with truth-level filtering, generate falling jet spectrum in this range
 - → PYTHIA events only want to know instinct jet response from detector, not from UE
 - → repeat for each calo configuration, so for 3 configurations (nominal, 1/2 EMCal, short HCal) this is 30k events total
- Key observable: jet energy response p_Treco / p_Ttrue
- Upon request by Collaboration, could extend study to:
 - → translate given response distribution into syst. uncertainties
 - \rightarrow explore multiple p_T bins, and/or q/g difference at low p_T
 - → explore effects of UE

Strawman simulation proposal

- Take same set of $N_{\rm evt}$ = 10k, $p_{\rm T}$ = 40-45 GeV, $|\eta|$ <0.6 dijets
 - → do tracking-only simulation, for multiple tracking options
 - → for this study, repeat for PYTHIA only and for HIJINGembedded since UE does affect performance
- For 3 (e.g.) tracking configurations, this is 10k events x 3 configs x 2 embeddings = 60k total w/ tracking-only sim
- Key observable: efficiency, fake rate, resolution vs. z
- Could extend study to:
 - → translate given performance into FF systematics?
 - → run 10k+ pure-HIJING events, w/ fast-sim calo matching?
 - ⇒ estimate statistical uncertainties vs. z for the FF of p_T = 40, 50, 60 GeV jets?

Summary

- We're getting some idea of the "descoped" detector configurations we'll be asked to evaluate
 - → but still waiting for word from on high
- Propose to evaluate their effect on jet response and on high- p_T charged particle efficiency/resolution/fake rate
 - photons are valuable part of physics program, but are not really affected by the particular descoping options
- Propose two simulation samples of 10k: $p_T = 40-45$ GeV, $|\eta| < 0.6$ dijet events: 30k G4 full-calo, 60k G4 tracking-only
 - → do these at a minimum, expand studies if we have time
 - → focus on performance metrics first, then translate to the estimated systematic uncertainties which correspond to these
- Suggestions? Volunteers?